BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 52 (7), 2149-2150 (1979)

Substitution Reactions of (Acetonitrile)chlorobis(triphenyl-phosphine)rhodium(I) in Benzene

Yoshimi Ohtani, Akihiko Yamagishi, and Masatoshi Fujimoto* Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060 (Received October 11, 1978)

Synopsis. The kinetics of the substitution reactions of RhCl(NCCH₃)(PPh₃)₂ in benzene was studied at 20 °C by the stopped-flow method under anaerobic conditions. The following mechanism was proposed:

$$\begin{array}{c} \text{RhCl}(C_2H_4)(\text{PPh}_3)_2 \xrightarrow{C_2H_4} \text{RhClH}_2(C_2H_4)(\text{PPh}_3)_2 \xrightarrow{CH_3\text{CN}} \text{RhClH}_2(\text{PPh}_3)_2 \xrightarrow{CH_3\text{CN}} \text{RhClH}_2(\text{NCCH}_3)(\text{PPh}_3)_2. \end{array}$$

In a previous paper we reported a kinetic study of a series of substitution reactions of Wilkinson's complex, showing that the substitution reaction, RhCl(C₂H₄)-(PPh₃)₂+H₂+PPh₃⇒RhClH₂(PPh₃)₃+C₂H₄, proceeds faster than the dissociation of C₂H₄ from RhCl(C₂H₄)-(PPh₃)₂ as well as that of H₂ from RhClH₂(PPh₃)₃.¹¹ The results suggest an associative mechanism involving dihydrido-ethylene complex RhClH₂(C₂H₄)(PPh₃)₂ as a reaction intermediate, though it cannot be detected spectrophotometrically. In the present study, the substitution reaction of (acetonitrile)chlorobis(triphenyl-phosphine)rhodium(I) was investigated in comparison with that of chlorotris(triphenyl-phosphine)rhodium(I). The reaction was carried out in benzene at 20 °C.

Equilibria. The equilibrium constants K= $[RhClH_2(NCCH_3)L_2]/[RhCl(NCCH_3)L_2][H_2]$ and K'= $[RhCl(C_2H_4)L_2][CH_3CN]/[RhCl(NCCH_3)L_2][C_2H_4]$ were estimated from the measurements at [CH₃CN]= 1.0, 1.9, and 3.8 mol dm⁻³ to be 2.5×10^4 mol⁻¹ dm³ and 3.4×10^2 , respectively. The equilibrium constant for the substitution $K'' = [RhClH_2(NCCH_3)L_2][C_2H_4]/$ $[RhCl(C_2H_4)L_2][H_2][CH_3CN] \equiv K/K'$ was evaluated to be 74 mol⁻¹ dm³. The values of these equilibrium measurements indicate that hydrogen forms the final product RhClH₂(NCCH₃)L₂, but C₂H₄ cannot form the final product $RhCl(C_2H_4)(NCCH_3)L_2$. In the case of C₂H₄, substitution of CH₃CN in RhCl(NCCH₃)L₂ occurred to form a square planar complex RhCl-(C₂H₄)L₂. The results may explain the low catalytic activity of Wilkinson's complex in acetonitrile solutions. The acetonitrile molecule competes with the olefin in the coordination to the central rhodium atom, as suggested by Schrock and Osborn.3)

Kinetics. Addition Reactions: The addition of molecular hydrogen to RhCl(NCCH₃)L₂ and the substitution of the acetonitrile in RhCl(NCCH₃)L₂ complex by ethylene was found to proceed through both associative and dissociative paths based on the kinetic measurements:

where S denotes hydrogen or ethylene. Though no

accurate values could be obtained, the rate constant of the associative addition of hydrogen to RhCl(NC-CH₃)L₂, k, was estimated to be ca. 1.4×10^2 mol⁻¹ dm³·s⁻¹ from the addition rate of hydrogen obtained by extrapolating [CH₃CN] to infinity. The value lies between that for RhClL₃ ($4.8 \text{ mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$ at 25 °C) and that for RhClL₂ ($>7 \times 10^4 \text{ mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$ at 25 °C).⁴⁾ The rate constant of the dissociation of hydrogen from RhClH₂(NCCH₃)L₂ is calculated to be $5.6 \times 10^{-3} \text{ s}^{-1}$ from k and K. The rate constant of the dissociation of C₂H₄ from RhCl(C₂H₄)L₂ was reported to be 0.4 s^{-1} .¹⁾ The results indicate that the dissociation rates of H₂ from RhClH₂(NCCH₃)L₂ and C₂H₄ from RhCl(C₂H₄)L₂ are much lower than the rate of the substitution, RhCl(C₂H₄)L₂+H₂+CH₃CN \rightleftharpoons RhClH₂(NCCH₃)L₂+C₂H₄ (vide infra).

Substitution Reactions: Upon mixing a solution of $RhClH_2(NCCH_3)L_2$ with a solution containing C_2H_4 , or a solution of $RhCl(C_2H_4)L_2$ with a solution containing H_2 and CH_3CN , the spectrum of the solution rapidly turned to that of an equilibrium mixture of $RhClH_2(NCCH_3)L_2$ and $RhCl(C_2H_4)L_2$. Since no hydrogenation of the coordinated C_2H_4 was observed during the course of measurement,⁵⁾ the observed process should be expressed by

$$\begin{aligned} RhCl(C_2H_4)L_2 \,+\, H_2 \,+\, CH_3CN & \Longrightarrow \\ RhClH_2(NCCH_3)L_2 \,+\, C_2H_4. \end{aligned}$$

Figure 1 gives the dependence of $k_{\rm obsd}$ for the above reaction on [CH₃CN]. The observed rate constant is larger than the dissociation rate constant of C₂H₄ from RhCl(C₂H₄)L₂ and that of H₂ from RhClH₂-(NCCH₃)L₂, suggesting the existence of an associative intermediate. Increase in $k_{\rm obsd}$ with decreasing [CH₃CN] suggests that, in the substitution reaction, the dihydrido complex RhClH₂(NCCH₃)L₂ is activated by the dissociation of CH₃CN molecule, as in the case of the dissociation of a PPh₃ molecule from Rh-

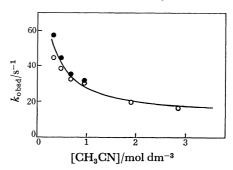


Fig. 1. The dependence of $k_{\rm obsd}$ on [CH₃CN] for the reactions, RhCl(C₂H₄)L₂+H₂+CH₃CN (\bigcirc) and RhClH₂(NCCH₃)L₂+C₂H₄ (\bigcirc). [Rh]=1.0×10⁻⁴, [H₂]=1.4×10⁻³, and [C₂H₄]=7.5×10⁻² mol dm⁻³. At 500 nm and 20 °C.

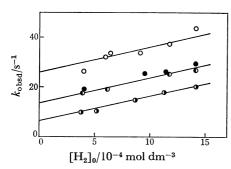


Fig. 2. The dependence of $k_{\rm obsd}$ on $[{\rm H_2}]$, $[{\rm C_2H_4}]$, and $[{\rm CH_3CN}]$ for the reaction ${\rm RhCl}({\rm C_2H_4}){\rm L_2} + {\rm H_2} + {\rm CH_3} - {\rm CN}$. The plot of $k_{\rm obsd}$ vs. $[{\rm H_2}]$. $[{\rm Rh}] = 1.0 \times 10^{-4}$ mol dm⁻³. $[{\rm C_2H_4}] = 7.5 \times 10^{-2}$ (\bigcirc , \bigcirc , \bigcirc) or 3.8×10^{-2} (\bigcirc) mol dm⁻³. $[{\rm CH_3CN}] = 0.5$ (\bigcirc , \bigcirc), 1.0 (\bigcirc), or 1.9 (\bigcirc) mol dm⁻³. At 500 nm and 20 °C.

 $\mathrm{ClH_2L_3.^{1)}}$ Figure 2 shows the dependence of k_{obsd} on $[\mathrm{H_2}]$, $[\mathrm{C_2H_4}]$, and $[\mathrm{CH_3CN}]$ for the reaction of $\mathrm{RhCl}(\mathrm{C_2H_4})\mathrm{L_2}$ with $\mathrm{H_2}$ and $\mathrm{CH_3CN}$. From Fig. 2 the k_{obsd} is expressed as

$$k_{\text{obsd}} = k[H_2] + k' \frac{[C_2 H_4]}{[CH_3 CN]}.$$
 (1)

The following mechanism is proposed for the substitution reaction:

$$\begin{split} & RhCl(C_2H_4)L_2 \, + \, H_2 \, + \, CH_3CN \, \stackrel{k_1}{\underset{k_{-1}}{\longleftarrow}} \, RhClH_2(C_2H_4)L_2 \\ & + \, CH_3CN \, \stackrel{k_2}{\underset{k_{-2}}{\longleftarrow}} \, RhClH_2L_2 \, + \, C_2H_4 \, + \, CH_3CN \, \stackrel{K_3}{\longleftarrow} \\ & RhClH_2(NCCH_3)L_2 \, + \, C_2H_4. \end{split}$$

The steady-state approximation to $RhClH_2(\mathrm{C}_2H_4)L_2$ and $RhClH_2L_2$ leads to

$$k_{\text{obsd}} = \frac{k_1 k_2}{k_{-1} + k_2} [H_2] + \frac{k_{-1} k_{-2}}{(k_{-1} + k_2) K_3} \cdot \frac{[C_2 H_4]}{[CH_3 CN]}.$$
 (2)

From Fig. 2, the values of $k_1k_2/(k_{-1}+k_2)$ and $k_{-1}k_{-2}/(k_{-1}+k_2)K_3$ are determined to be $9.6\times10^3\,\mathrm{mol^{-1}}\,\mathrm{dm^3\cdot s^{-1}}$ and $1.7\times10^2\,\mathrm{s^{-1}}$, respectively. The value of $k_1k_2/(k_{-1}+k_2)$ agrees with that obtained previously $(7.8\times10^{-1}\,\mathrm{ms^{-1}})$

 $10^3 \text{ mol}^{-1} \text{ dm}^3 \text{ s}^{-1}).^{1)}$

The uni-molecular activation step $RhCl(C_2H_4)L_2 \rightarrow Rh^*Cl(C_2H_4)L_2$ as observed in the case of $RhClL_3$, was not observed in the present study. This would be interpreted as suppression of the reaction by acetonitrile. The proposed mechanism also suggests that the effect of acetonitrile on the catalytic activity of Wilkinson's complex is due to the formation of a catalytically inactive species $RhClH_2(NCCH_3)L_2$, the fraction of which is determined by the value of K''.

Experimental

A solution of $RhCl(NCCH_3)(PPh_3)_2$ was prepared by dissolving $RhCl(C_2H_4)(PPh_3)_2$ in oxygen-free benzene containing acetonitrile.⁶⁾ The coordinated ethylene was easily replaced by acetonitrile, leaving a pure $RhCl(NCCH_3)$ - $(PPh_3)_2$ in the solution.

RhCl(C₂H₄)(PPh₃)₂ was prepared from RhCl(PPh₃)₃ and ethylene. Benzene and acetonitrile were distilled. Commercial hydrogen and ethylene were used without further purification. Concentration and purity were determined by gas chromatography with a molecular sieve 5A.

All the measurements were carried out at 20±0.2 °C in oxygen-free benzene. The equilibrium of the reaction was measured with a Hitachi EPS-3T spectrophotometer. The kinetic measurements were made using a Union Giken RA-1300 stopped-flow apparatus under anaerobic conditions.

References

- 1) Y. Ohtani, M. Fujimoto, and A. Yamagishi, *Bull. Chem. Soc. Jpn.*, **50**, 1453 (1977).
- 2) C. A. Tolman, P. Z. Meakin, D. L. Lindner, and J. P. Jesson, J. Am. Chem. Soc., **96**, 2762 (1974).
- 3) R. R. Schrock and J. A. Osborn, J. Am. Chem. Soc., 98, 2134 (1976).
- 4) J. Halpern and C. S. Wong, J. Chem. Soc., Chem. Commun., 1973, 629.
- 5) J. A. Osborn, F. H. Jardine, J. F. Young, and G. Wilkinson, *J. Chem. Soc.*, A, **1966**, 1711.
- 6) Y. Ohtani, A. Yamagishi, and M. Fujimoto, *Bull. Chem. Soc. Jpn.*, **52**, 1537 (1979).